Principal ideal and Noetherian groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly Noetherian rings and constructive ideal theory

We give a new constructive definition for Noetherian rings. It has a very concrete statement and is nevertheless strong enough to prove constructively the termination of algorithms involving “trees of ideals”. The efficiency of such algorithms (at least for providing clear and intuitive constructive proofs) is illustrated in a section about Lasker–Noether rings: we give constructive proofs for ...

متن کامل

Limit Groups of Equationally Noetherian Groups

We collect in this paper some remarks and observations about limit groups of equationally noetherian groups. We show in particular, that some known properties of limit groups of a free group or, more generally, of a torsion-free hyperbolic group can be seen as consequences of the fact that such groups are equationally noetherian. Especially, such properties are still true for linear groups and ...

متن کامل

GENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES

The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.

متن کامل

Principal Ideal Domains

Last week, Ari taught you about one kind of “simple” (in the nontechnical sense) ring, specifically semisimple rings. These have the property that every module splits as a direct sum of simple modules (in the technical sense). This week, we’ll look at a rather different kind of ring, namely a principal ideal domain, or PID. These rings, like semisimple rings, have the property that every (finit...

متن کامل

A Generalized Principal Ideal Theorem

KrulΓs principal ideal theorm [Krull] states that q elements in the maximal ideal of a local noetherian ring generate an ideal whose minimal components are all of height at most q. Writing R for the ring, we may consider the q elements, x19 , xq say, as coordinates of an element xeR. It is an easy observation that every homomorphism R —> R carries x to an element of the ideal generated by xi9 ,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1978

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1978.75.87